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The utility of the two docking programs DOCK and AutoDock in studying the binding of small molecules

to the minor groove of B-DNA is examined. The AutoDock program is found to be more effective in both
pose prediction and ranking of known binders over random compounds, and this superior performance is
shown to be because of the scoring functions rather than the sampling algorithms.

Introduction groove to accommodate side-by-side chains of aromatic rings

Ligands that can bind noncovalently in the B-DNA minor joined W'“;Z amide bonds, to give a high level of sequence
groové 3 can show a wide range of anticancer, antiviral, anti- S€l€ctivity™ This study focuses on the use of the DOCK and
protozoal, and anti-infective properti¢= Some are in current AutoDock programs to study molecules in the first category,
clinical use with, for example, pentamidine active against POth for pose prediction and ranking purposes. Both of these
antimony-resistant leishmaniasis, primary stage human African Programs use a scoring function derived from molecular
trypanosomiasis, and AIDS-relat&theumocystis carinipneu- mechanics potentials (specifically AMBERSfland as such can
monia# An orally active prodrug of the bis-[amidino-phenyl]- P& used more readily with DNA than with functions that are
furan compound furamidine is currently in clinical trials against derived from structural mformatlogsozlg proteifigand |nt7erac-
both malaria and®neumocystis carinpneumonid. The mech-  tions, such as PMF ScoféBLEEP?>2°and DrugScoré’ We
anism of action of these compounds is not fully elucidated, but US€ 28 liganetDNA complexes (see Figure 1 for molecular
numerous studies have implicated active transport into targetStructures) obtained from the Protein Data B#rs a test set
cells, followed by DNA binding as a key step, then inhibition 0 @ssess the ability of DOCK and AutoDock to predict the
and disruption of binary DNA-protein complexes, possibly experimental binding poses..We also assess four different
involving host-specific topoisomerases and/or generalized fran-commonly used methods for ligand charge assignment for use
scription factors. The crystal structures of a number of DNA With the pose prediction with DOCK and AutoDock. We use
complexes with these drugs have been deterfined con- the same Ilgan_d test set to investigate whether the scoring
stitute a significant resource for further drug degigrthis area, ~ functions can discriminate known binders from random com-
where there are a number of major worldwide unmet clinical POUnds, chosen from the ZINC databé%e.
needs.

Virtual, or in silico, screening of compounds for their

interactions with a macromolecular target is a popular technique _ P0S€ Prediction.The results for DOCK are presented in
in drug discovery11Docking a ligand into a receptor binding Figure 2a. These demonstrate a success rate of around 40% in

site involves the use of a sampling algorithm and a scoring Predicting the crystal structure pose to wit2 A RMSD. No
function to assess which orientation the molecule is most likely M0del shows a systematic improvement in the results as the
to adopt, and the correct identification of the binding pose of S28MPling (i andno) is increased. The results for AutoDock
one or more related ligands can be important in establishing a@'€ Presented in Figure 2b. These demonstrate a success rate of
structure-activity relationship in lead optimizatiot#:12 The around 55% in predicting the crystal structu_re pose to within 2
second use of scoring functions is to rank different ligands to A RMSD for the AMSOL charge models, with slightly poorer
predict their relative experimental activity. Scoring functions results for the other models. The improvement in results with

that are effective in this regard can be used to find new active Incréased sampling is somewhat more systematic.
compounds from libraries of random molecules. It is important to ask whether the scoring function or the

The vast majority of in silico studies have examined protein sampling algorithm is responsible for the failure of the methods
receptors, but the minor groove of DNA is also an important to predict the correct dopked pose. The score of the PDB ligand
target, as discussed above. However, there are only a smalPOS€S was calculated with each program, after the geometry had
number of DNA-small molecule docking studigs2! even been_optlmlzed in thg receptor structure using the same scoring
though DNA has an exceptionally well-characterized structure. function and local minimization algorithm used in the docking
There are two broad families of noncovalent minor groove "Uns- We then define the discrimination factor metilg)(
binding compoundsthose that bind without a significant
increase in groove width from the free DNA, which typically _ Edock ~ Epab 1)
contains aromatic rings and charged end groups, and the f U(Epdb)
polyamide hairpin and related compounds, which broaden the

Results
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Figure 1. The 28 ligands used as a test set, labeled by the PDB ID of the-Bligand crystal structure from which they were extracted.

predicts that a pose exists, which is lower in energy than the exception from these general rules: for the 1FMS ligand in the
experimentally observed conformation but is significantly DOCK program, the program failed to dock the ligand ac-
structurally distinct. IfD; >0, the sampling procedure has failed curately but had positivB; values for all of the charge methods.
to locate the experimental structure, even though it is lower in One possibility is that this could be a consequence of the large
energy than the predicted pose. hydrophobic substituent at each end of the 1FMS molecule.
The mean values oD; for ligands where the docking We note that information on the performance of the sampling
methodology failed to predict the crystallographic pose to within algorithm could also be obtained by comparing the RMSD of
2 A RMSD are plotted in Figure 3a and b. For DOCK, the every trial pose generated during each docking run with the
mean values oDy are consistently negative, indicating that a crystallographic pose, but this would require technical modifica-
poor scoring function is responsible for docking failure. For tions to the DOCK and AutoDock programs to output all of
AutoDock, the mean values & are positive for low sampling  the poses, which are beyond the scope of this study. Also, since
but become negative as the sampling is increased, indicatingsampling is guided by the energy function, such a measure
that the AutoDock scoring function is also ultimately at fault would not test the independent performance of the sampling.
in the cases where the program failed. Looking at the results A positive Ds score is a definite indication that sampling failed
for success or failure for each individual ligand, rather than the to locate the global minimum of the potential, (althougt>0
average over ligands (data not shown in full), reveals only one does not prove that the energy function is not also incorrect).
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— T The results for the other three charge models (not plotted) are very
1k 205 similar
— 2.5 m— — .
e s 30A = ' | 2
g 06 - 5 DOCK and MMFF94 charges will also be docked correctly by
5 2 AutoDock and AMS-HEX, and conversely, there is only a 47%
g 04 3 chance that a ligand docked correctly with AutoDock and AMS-
= 2 = HEX charges will also be docked correctly by DOCK and
MMFF94.

z"%z%z%;% 7 z%z‘%@!%:%%? To address the question of why certain ligands docked
%, % %, . :

) o ) successfully and others did not, we considered receptor flex-

F'gu"Tzh- (]f‘) DQCKfp%SG prfl’_d'Ct'O” rﬁSU“Sv showing fofr ﬁaCh cEarge ibility and the possibility that molecules that crystallized in a

model the fraction of the 28 ligands that were successfully docked 10 o j1ay \where the DNA structure was significantly different

within 2.0, 2.5, and 3.0 A of the crystal structure pose, using each
combination ofn, and n (see x-axis label). (b) AutoDock pose from the 1VZK structure used as the receptor would be more

prediction results, showing for each charge model the fraction of the likely to fail. However, we found that the maximum RMSD
28 ligands that were successfully docked to within 2.0, 2.5, and 3.0 A between the atoms of the 1VZK structure and the other DNA

of the crystal structure pose, using each value.qseex-axis label). duplexes was only 1.47 A and that there was no correlation
Examining the data for each ligand (not shown in full) also between this RMSD and the RMSD of the docked ligands from
demonstrates a general consistency across the charge sets withiieir crystal pose.
either DOCK or AutoDock. If a ligand was successfully docked ~ We also examined two unliganded structures of the same
with <2 A RMSD accuracy with the best performing charge sequence (355D and 9BNA) and found that both had an RMSD
set in DOCK (MMFF94, 47% success rate at the highest of <1A from the 1VZK structure, further suggesting that there
sampling), there is a 71% chance it was also docked accuratelyis no significant induced fit in these complexes.
in all three other charge sets and a 76% chance it was docked Enrichment. The results for DOCK with the standard energy
accurately in at least two of the three other charge sets. If afunction are presented in Figure 4a. This graph shows a very
ligand was successfully docked with2 A RMSD accuracy high enrichment rate of known binders over the random
with the best performing charge set in AutoDock (AMS-HEX, compounds. The results improve markedly on moving from the
57% success rate at the highest sampling), there is a 67% chanc®west sampling raten{ = 1000,n, = 25) to the next highest
it was also docked accurately in all three other charge sets andrate . = 10 000,n, = 100). We also tested the generalized
a 100% chance it was docked accurately in at least two of the Born surface area (GBSA) scoring functions of DOCK by
three other charge sets. rescoring the docked poses generated with the standard energy
In contrast, comparing results from DOCK and AutoDock, function. Results for DOCK with th&GpingindS* function (eq
there is only a 50% chance that a ligand docked correctly with 2) are shown in Figure 4b (the results WitGpingind>K are
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Figure 4. (a) DOCK enrichment plots with an energy scoreSi()

for 0 < f < 10% of the 9216 random and 28 known binding molecules
for three different sampling rates( n,). The MMFF94 charge model
was used. (b) DOCK enrichment plots wWikiGpingind>¥ scoring function
(see eq 2) oSHf) for 0 < f < 10% of the 9216 random and 28 known
binding molecules for three different sampling rates, (1,). The
MMFF94 charge model was used. (c) AutoDock enrichment plots of
SHf) for 0 < f < 10% of the 9216 random and 28 known binding
molecules for three different sampling rateg) (The MMFF94 charge
model was used.

very similar). These results show some improvement over the

standard energy function af = 1000 and better performance

atf < 0.5%, but no systematic improvement as sampling was
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Table 1. SE(f = 1%) Values for the Docking Methodologies, as Also
Shown Graphically in Figure 4a and ¢

DOCK energy score AutoDock
SE(f = 1%) SE(f = 1%)
total success failure total success failure
1000 25 0.39 0.80 0.17 1000 0.50 0.80 0.43
10000 100 0.54 0.64 0.43 10000 0.79 0.92 0.69
100000 100 0.57 0.55 0.59 100000 0.86 0.92 0.80

aTotal refers to all of the known binding compounds, success to those
that were docked to<2 A RMSD accuracy with the relevant docking
methodology, and failure to those that were not docked 20A RMSD
accuracy.

Table 2. AUC Values for the Docking Methodologies, as Also Shown
Graphically in Figure 4a anc?c

DOCK energy score AutoDock

AUC AUC
total success failure total success failure
1000 25 093 0.99 0.90 1000 096 0.99 0.95
10000 100 0.97 0.98 0.96 10000 0.98 0.99 0.98
100000 100 0.91 0.96 0.88 100000 0.97 1.00 0.96

aTotal refers to all of the known binding compounds, success to those
that were docked to<2 A RMSD accuracy with the relevant docking
methodology, and failure to those that were not docked 20A RMSD
accuracy.

the SEf) and AUC values when only successfully docked
ligands are considered (and a deterioration for unsuccessfully
docked ligands). These observations are equivalent to noting
that successfully docked ligands have on average a better ranking
(more favorable binding energy) than unsuccessfully docked
ligands. This point potentially could be exploited to improve
confidence estimates for pose prediction results, though it is
also noticeable that as the sampling increases the differential
between the enrichment of the successfully and unsuccessfully
docked ligands decreases.

Time is an important factor in planning virtual screening
experiments, and so we note here that sampling with DOCK
and parameters; = 10 000 andh, = 100 took an average of
40 s per ligand, and with AutoDock and = 10 000, it took
an averagefd s per ligand (on a 3.0 GHz Intel86—64 CPU).

At these values of the parameters, the enrichment performance
appears to be near maximal, although this is only on the basis
of three sampling rates per program (Figure 4a and c, Tables 1
and 2), and it would be necessary to use a larger number of
intermediate rates to fully establish which program was more
efficient in computer time.

Conclusions
The separate but related problems of pose prediction and

increased, which is perhaps a result of the poses not beingassessing binding affinity for DNA-binding ligands have been

minimized with the GBSA function, a procedure that was too
time consuming.

addressed with both DOCK and AutoDock. The AutoDock
program with the default empirical free energy scoring function

The results for AutoDock are presented in Figure 4c and show and AMS-HEX charges is shown to give the best performance
excellent enrichment rates that increase systematically with for accuracy of pose prediction, with 57% of the 28 ligands
sampling. Enrichment and AUC values are compared in Tables docked to<2.0 A RMSD accuracy. Via thBr metric introduced
1 and 2. AutoDock is clearly the better performer, despite the here, the failure of pose prediction in all cases (except one ligand
fact that the results for pose prediction with MMFF94 charges with the DOCK sampling procedure) is shown to be because

were roughly equivalent between the two programs.

of deficiencies in the scoring functions.

We also attempted to assess the importance of accurate pose The AutoDock program was also shown to give the best
prediction in producing good ligands scores by recalculating enrichment of known binding compounds in a screen of 9216

the SHf) and AUC values, treating only those ligands that were
shown to successfully dock te2 A RMSD accuracy as known

randomly chosen molecules with an enrichment v =
1%) = 86%. This value might be expected to improve if the

binders and also only using those ligands that were shown notmol2 files with AMS-HEX charges become available from the
to dock successfully. In all cases, there is an improvement in ZINC database because this charge set is demonstrated to give
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the best pose prediction, and accurate pose prediction is also DOCK Methodology. The DOCK program (v. 5.1.1) was
shown to be correlated to enrichment. Nonetheless, the currentused?® It was slightly modified to introduce a Mersenne twister
performance is very encouraging and should enable screens ofandom number generator (RN&pecause the built-in random

larger numbers of compounds to detect unknown DNA-binding
molecules. The GBSA scoring function in the DOCK program

number generators did not give reproducible results on our
systems; the default RNG is adequately random, but identical

was employed as the post-docking filter and not shown to give seeds did not give identical runs, which was felt to be important
a large improvement in enrichment over the standard DOCK for a systematic study. DOCK defines the binding site by a

energy score, except at very ldw

As noted earlier, the application of in silico virtual screening
techniques to DNA-ligand binding is relatively uncommon, and
we are not aware of a similar study since the early work of
Grootenhuis et a>161t is interesting to consider whether these
methods are more or less effective for DNA than for the protein
systems for which they are principally used. A recent study on
the pose prediction of 189 different proteiligand complexes

cluster of spheres, which was chosen in this case to cover the
entire minor groove. AMBER94 charges and van der Waals
parameters were assigned to the atoms of the DNA to construct
the interaction grids. The DOCK energy score was used as the
primary and secondary scoring function in the docking runs.
The generalized Born surface area (GBSA) scoring funttion
was found to be too slow to use as a primary or secondary
function in docking calculations, but was tested as a post-

with different scoring functions showed that success rates of docking filter (see below). All default parameters were used

70—90% were typical for DOCK and AutoDock scores with
the exception of a few protein famili€8 Another recent study
on 5 protein targets and a total of 49 known ligands, which
focused on enrichment, showed that average DEK = 2%)
values were around 20%.The GOLD scoring functiot?
performed significantly better in the same study WaHKf =

for the docking runs and grid construction, except for two
parameters, which were systematically varied to determine their
effect: n,, the number of orientations of each anchor attempted,
andn, the number of conformations per cycle of ligand growth.
These parameters both relate to the anchor-first flexible ligand
algorithm?#® which involves splitting each ligand into fragments.

2%) values averaging 40% but reaching 80% for some targets;One fragment is selected as the anchor. This anchor is docked

AutoDock was not used in this work. Therefore, it would appear
(although it is impossible to summarize all of the available
protein—ligand docking information) that the pose prediction

No times into the receptor, and the top-scorimgorientations
taken forward. The remaining ligand fragments are then added
one by one with a torsional search to find the best orientation

performance in the present study is slightly disappointing, but with respect to the anchor, and after each fragment is added,
the observed enrichment exceeds what one would expect fromthe top-scoring: conformations are taken forward to the next

similar protein-ligand studies. It is interesting that the Au-

toDock scoring function, which was parametrized with experi-
mental proteir-ligand inhibition constants, performs better than
the DOCK scoring function, which is more closely matched to
the original AMBER94 force field. It would thus appear that
the parametrization is transferable from proteins to DNA.

Methods

Ligand and Receptor Preparation. Twenty-eight crystal
structures of the d(CGCGAATTCGCg$equence complexed
with small molecule ligands were downloaded from the PBB,
via a search of the Nucleic Acid Data Bank (NEB The
ligands with their corresponding PDB IDs are shown in Figure

stage until the whole ligand has been constructed. Increasing
N, andn. will increase the sampling carried out in each docking
run, which should improve the accuracy of the method if the
scoring function is adequate, but naturally, it also increases the
run time. It was also found in preliminary testing to be more
effective in terms of pose prediction to use united atom
descriptions of both the DNA and the ligands.

The accuracy of each docking run was assessed by the root-
mean-squared deviation (RMSD) of the heavy atom coordinates
of the docked ligand from the heavy atom coordinates of the
crystal structure ligand, after the heavy atoms of the two DNA
duplexes had been placed in maximal alignment. This procedure
was automated via a script written for the VMD progréthithe

1. The ligands were extracted, atom types assigned, explicitSYmmetry of the DNA sequence was taken into account in
hydrogens added, and the molecules minimized to 0.1 kcal detérmining the RMSD. Only the best-scoring pose from each

mol~YA root-mean-squared gradient using the Sybyl 7.0 pack-
agé* and the MMFF94 force field. Atomic point charges were
assigned according to four different models, MMFFE&Z?
AM1-BCC %41 and two AM1-CM2 method4? designed to

docking run was considered, which in our opinion is the best
measure of the utility of the docking tool in the absence of other
information about the binding pose.

AutoDock Methodology. The AutoDock program (v 3.05)

produce charges approriate for an aqueous and nonpolar organiwas used®*!AutoDock defines the binding site solely in terms

solvent respectively (AMSOL-WAT and AMSOL-HEX).

of a grid of interaction points. We chose to center this grid at

MMFF94 was chosen because the mol2 format files available the center of the minor groove. The minor groove center was

from the ZINC databag® (see below) have MMFF94 point

defined as the point on the line perpendicular to line connecting

charges assigned. AM1-BCC is a semiempirical charge modelthe N3 atoms of the central purine residues and the line
derived to reproduce the restrained electrostatic potential (RESP)connecting the O2 atoms of the central pyrimidine residues,
approach to charge fitting used in parametrizing the AMBER94 which is 3.0 A away from both O2 atoms on the central

force field?® the force field that is the basis of the scoring
functions used in both DOCK and AutoDock. The AMSOL-
WAT models are used in the db format files in ZINC, and the
charges were assigned here using the appféatiwei et al.,
as is also the case for ZINE.

The receptor for all of the docking studies was chosen from
the 28 ligand-receptor structures to be the DNA duplex closest

pyrimidine residues. This position was calculated using a script
written for the MMTK packagé? The grid was extended 30 A
along the DNA axis and 22.5 A in the two perpendicular
directions to encompass the entire minor groove.

Point charges were assigned to the DNA according to the
AMBER94 force field, as with DOCK. The default van der
Waals interaction parameters (based on a smoothed united atom

to the average of these 28 structures, as determined by a scripAMBER force field) were used. The default behavior of using

written for theptraj program in the AMBERS packadé.This
most representative structure was the 1VZK DNA duplex.

united atom representations of both ligand and receptor was
adopted, as had been shown to be most successful in DOCK.
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Table 3. SHf = 1%) and AUC Values for the DOCK GBSA the van der Waals interactio®A.p the hydrophobic surface
AGpindingSX Methodology, as Also Shown Graphically in Figure 4b area, andSAthe total surface afeaGbindingKSK is the param-
DOCK GBSAAGpindingSX Score etrization according to Kang et &.
Ne No SHf = 1%) AUC The results studies were assessed according to the enrichment
oo 42

1000 o5 054 0.93 or sensitivity SH):

10000 100 0.57 0.95

100000 100 0.54 0.91 Nselected known binders

SHf) = e (4)
total known binders

The AutoDock free energy scoring functi&hwhich is based
on these force field terms plus additional solvation and entropic __ . . . .
P P This calculation refers to a scenario where the top fradtioh

terms, was used for all calculations. It was necessary to add h d ked by docki | d and
solvation terms for phosphorus atoms; these were adopted from'€ compounds as ranked by docking are selected and one

a recent study that used AutoDock to examine RNigand wishes to know what fractioq O.f the total numbg rof known
interaction®3 Ten runs of the default Lamarkian genetic bln(_jers have been found. Similarly, the specificBf() is
algorithm for searching ligand conformations were used per defined as

ligand; the only parameter adjusted from the default was

the number of energy evaluations allowed for each run of the SRf) = Niscarded random compounds )
genetic algorithm. The, value was adjusted systematically to N
investigate the effect of increased sampling on the effectiveness

of the procedure. The best scoring solution from all 10 runs gnd the area under the curve (AUC) of a ploSif) versus (1

was used as the predicted binding conformation. ~ — SR¥)) is another useful measure of the overall performance
The accuracy of each docking run was assessed according tQyf 5 virtual screening procedufe.

the RMSD of the ligand heavy atom coordinates from the crystal

structure, using the same procedure as used for the DOCK runs, Acknowledgment. We are grateful to Cancer Research UK
described above. and Spirogen, Ltd. for support of these studies.
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