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The utility of the two docking programs DOCK and AutoDock in studying the binding of small molecules
to the minor groove of B-DNA is examined. The AutoDock program is found to be more effective in both
pose prediction and ranking of known binders over random compounds, and this superior performance is
shown to be because of the scoring functions rather than the sampling algorithms.

Introduction

Ligands that can bind noncovalently in the B-DNA minor
groove1-3 can show a wide range of anticancer, antiviral, anti-
protozoal, and anti-infective properties.4-6 Some are in current
clinical use with, for example, pentamidine active against
antimony-resistant leishmaniasis, primary stage human African
trypanosomiasis, and AIDS-relatedPneumocystis cariniipneu-
monia.4 An orally active prodrug of the bis-[amidino-phenyl]-
furan compound furamidine is currently in clinical trials against
both malaria andPneumocystis cariniipneumonia.7 The mech-
anism of action of these compounds is not fully elucidated, but
numerous studies have implicated active transport into target
cells, followed by DNA binding as a key step, then inhibition
and disruption of binary DNA-protein complexes, possibly
involving host-specific topoisomerases and/or generalized tran-
scription factors. The crystal structures of a number of DNA
complexes with these drugs have been determined8 and con-
stitute a significant resource for further drug design9 in this area,
where there are a number of major worldwide unmet clinical
needs.

Virtual, or in silico, screening of compounds for their
interactions with a macromolecular target is a popular technique
in drug discovery.10,11Docking a ligand into a receptor binding
site involves the use of a sampling algorithm and a scoring
function to assess which orientation the molecule is most likely
to adopt, and the correct identification of the binding pose of
one or more related ligands can be important in establishing a
structure-activity relationship in lead optimization.12,13 The
second use of scoring functions is to rank different ligands to
predict their relative experimental activity. Scoring functions
that are effective in this regard can be used to find new active
compounds from libraries of random molecules.

The vast majority of in silico studies have examined protein
receptors, but the minor groove of DNA is also an important
target, as discussed above. However, there are only a small
number of DNA-small molecule docking studies,14-21 even
though DNA has an exceptionally well-characterized structure.
There are two broad families of noncovalent minor groove
binding compoundssthose that bind without a significant
increase in groove width from the free DNA, which typically
contains aromatic rings and charged end groups, and the
polyamide hairpin and related compounds, which broaden the

groove to accommodate side-by-side chains of aromatic rings
joined with amide bonds, to give a high level of sequence
selectivity.22 This study focuses on the use of the DOCK and
AutoDock programs to study molecules in the first category,
both for pose prediction and ranking purposes. Both of these
programs use a scoring function derived from molecular
mechanics potentials (specifically AMBER9423) and as such can
be used more readily with DNA than with functions that are
derived from structural information on protein-ligand interac-
tions, such as PMF Score,24 BLEEP,25,26and DrugScore.27 We
use 28 ligand-DNA complexes (see Figure 1 for molecular
structures) obtained from the Protein Data Bank28 as a test set
to assess the ability of DOCK and AutoDock to predict the
experimental binding poses. We also assess four different
commonly used methods for ligand charge assignment for use
with the pose prediction with DOCK and AutoDock. We use
the same ligand test set to investigate whether the scoring
functions can discriminate known binders from random com-
pounds, chosen from the ZINC database.29

Results

Pose Prediction.The results for DOCK are presented in
Figure 2a. These demonstrate a success rate of around 40% in
predicting the crystal structure pose to within 2 Å RMSD. No
model shows a systematic improvement in the results as the
sampling (nc and no) is increased. The results for AutoDock
are presented in Figure 2b. These demonstrate a success rate of
around 55% in predicting the crystal structure pose to within 2
Å RMSD for the AMSOL charge models, with slightly poorer
results for the other models. The improvement in results with
increased sampling is somewhat more systematic.

It is important to ask whether the scoring function or the
sampling algorithm is responsible for the failure of the methods
to predict the correct docked pose. The score of the PDB ligand
poses was calculated with each program, after the geometry had
been optimized in the receptor structure using the same scoring
function and local minimization algorithm used in the docking
runs. We then define the discrimination factor metric (Df)

whereEpdb is the score of the crystallographic pose,Edock is the
score of the top-ranked (lowest energy) pose found in the
docking run, andσ(Epdb) is the standard deviation ofEpdb across
all 28 complexes. IfDf <0, the scoring function erroneously
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predicts that a pose exists, which is lower in energy than the
experimentally observed conformation but is significantly
structurally distinct. IfDf >0, the sampling procedure has failed
to locate the experimental structure, even though it is lower in
energy than the predicted pose.

The mean values ofDf for ligands where the docking
methodology failed to predict the crystallographic pose to within
2 Å RMSD are plotted in Figure 3a and b. For DOCK, the
mean values ofDf are consistently negative, indicating that a
poor scoring function is responsible for docking failure. For
AutoDock, the mean values ofDf are positive for low sampling
but become negative as the sampling is increased, indicating
that the AutoDock scoring function is also ultimately at fault
in the cases where the program failed. Looking at the results
for success or failure for each individual ligand, rather than the
average over ligands (data not shown in full), reveals only one

exception from these general rules: for the 1FMS ligand in the
DOCK program, the program failed to dock the ligand ac-
curately but had positiveDf values for all of the charge methods.
One possibility is that this could be a consequence of the large
hydrophobic substituent at each end of the 1FMS molecule.

We note that information on the performance of the sampling
algorithm could also be obtained by comparing the RMSD of
every trial pose generated during each docking run with the
crystallographic pose, but this would require technical modifica-
tions to the DOCK and AutoDock programs to output all of
the poses, which are beyond the scope of this study. Also, since
sampling is guided by the energy function, such a measure
would not test the independent performance of the sampling.
A positiveDf score is a definite indication that sampling failed
to locate the global minimum of the potential, (althoughDf >0
does not prove that the energy function is not also incorrect).

Figure 1. The 28 ligands used as a test set, labeled by the PDB ID of the DNA-ligand crystal structure from which they were extracted.
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Examining the data for each ligand (not shown in full) also
demonstrates a general consistency across the charge sets within
either DOCK or AutoDock. If a ligand was successfully docked
with <2 Å RMSD accuracy with the best performing charge
set in DOCK (MMFF94, 47% success rate at the highest
sampling), there is a 71% chance it was also docked accurately
in all three other charge sets and a 76% chance it was docked
accurately in at least two of the three other charge sets. If a
ligand was successfully docked with<2 Å RMSD accuracy
with the best performing charge set in AutoDock (AMS-HEX,
57% success rate at the highest sampling), there is a 67% chance
it was also docked accurately in all three other charge sets and
a 100% chance it was docked accurately in at least two of the
three other charge sets.

In contrast, comparing results from DOCK and AutoDock,
there is only a 50% chance that a ligand docked correctly with

DOCK and MMFF94 charges will also be docked correctly by
AutoDock and AMS-HEX, and conversely, there is only a 47%
chance that a ligand docked correctly with AutoDock and AMS-
HEX charges will also be docked correctly by DOCK and
MMFF94.

To address the question of why certain ligands docked
successfully and others did not, we considered receptor flex-
ibility and the possibility that molecules that crystallized in a
complex where the DNA structure was significantly different
from the 1VZK structure used as the receptor would be more
likely to fail. However, we found that the maximum RMSD
between the atoms of the 1VZK structure and the other DNA
duplexes was only 1.47 Å and that there was no correlation
between this RMSD and the RMSD of the docked ligands from
their crystal pose.

We also examined two unliganded structures of the same
sequence (355D and 9BNA) and found that both had an RMSD
of <1Å from the 1VZK structure, further suggesting that there
is no significant induced fit in these complexes.

Enrichment. The results for DOCK with the standard energy
function are presented in Figure 4a. This graph shows a very
high enrichment rate of known binders over the random
compounds. The results improve markedly on moving from the
lowest sampling rate (nc ) 1000,no ) 25) to the next highest
rate (nc ) 10 000,no ) 100). We also tested the generalized
Born surface area (GBSA) scoring functions of DOCK by
rescoring the docked poses generated with the standard energy
function. Results for DOCK with the∆Gbinding

ZSK function (eq
2) are shown in Figure 4b (the results with∆Gbinding

KSK are

Figure 2. (a) DOCK pose prediction results, showing for each charge
model the fraction of the 28 ligands that were successfully docked to
within 2.0, 2.5, and 3.0 Å of the crystal structure pose, using each
combination of no and nc (see x-axis label). (b) AutoDock pose
prediction results, showing for each charge model the fraction of the
28 ligands that were successfully docked to within 2.0, 2.5, and 3.0 Å
of the crystal structure pose, using each value ofne (seex-axis label).

Figure 3. (a) DOCKDf values for the MMFF94 charge model, using
each value ofno, nc (seex-axis label). The values plotted are the average
over all ligands that were not docked to within 2 Å RMSD of the
crystallographic pose, and the error bars are the standard deviation.
The results for the other three charge models (not plotted) are very
similar. (b) AutoDockDf values for the AMS-HEX charge model,
using each value ofne (seex-axis label). The values plotted are the
average over all ligands that were not docked to within 2 Å RMSD of
the crystallographic pose, and the error bars are the standard deviation.
The results for the other three charge models (not plotted) are very
similar.
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very similar). These results show some improvement over the
standard energy function atnc ) 1000 and better performance
at f < 0.5%, but no systematic improvement as sampling was
increased, which is perhaps a result of the poses not being
minimized with the GBSA function, a procedure that was too
time consuming.

The results for AutoDock are presented in Figure 4c and show
excellent enrichment rates that increase systematically with
sampling. Enrichment and AUC values are compared in Tables
1 and 2. AutoDock is clearly the better performer, despite the
fact that the results for pose prediction with MMFF94 charges
were roughly equivalent between the two programs.

We also attempted to assess the importance of accurate pose
prediction in producing good ligands scores by recalculating
theSE(f) and AUC values, treating only those ligands that were
shown to successfully dock to<2 Å RMSD accuracy as known
binders and also only using those ligands that were shown not
to dock successfully. In all cases, there is an improvement in

the SE(f) and AUC values when only successfully docked
ligands are considered (and a deterioration for unsuccessfully
docked ligands). These observations are equivalent to noting
that successfully docked ligands have on average a better ranking
(more favorable binding energy) than unsuccessfully docked
ligands. This point potentially could be exploited to improve
confidence estimates for pose prediction results, though it is
also noticeable that as the sampling increases the differential
between the enrichment of the successfully and unsuccessfully
docked ligands decreases.

Time is an important factor in planning virtual screening
experiments, and so we note here that sampling with DOCK
and parametersnc ) 10 000 andno ) 100 took an average of
40 s per ligand, and with AutoDock andne ) 10 000, it took
an average of 8 s per ligand (on a 3.0 GHz Intel×86-64 CPU).
At these values of the parameters, the enrichment performance
appears to be near maximal, although this is only on the basis
of three sampling rates per program (Figure 4a and c, Tables 1
and 2), and it would be necessary to use a larger number of
intermediate rates to fully establish which program was more
efficient in computer time.

Conclusions

The separate but related problems of pose prediction and
assessing binding affinity for DNA-binding ligands have been
addressed with both DOCK and AutoDock. The AutoDock
program with the default empirical free energy scoring function
and AMS-HEX charges is shown to give the best performance
for accuracy of pose prediction, with 57% of the 28 ligands
docked to<2.0 Å RMSD accuracy. Via theDf metric introduced
here, the failure of pose prediction in all cases (except one ligand
with the DOCK sampling procedure) is shown to be because
of deficiencies in the scoring functions.

The AutoDock program was also shown to give the best
enrichment of known binding compounds in a screen of 9216
randomly chosen molecules with an enrichment valueSE(f )
1%) ) 86%. This value might be expected to improve if the
mol2 files with AMS-HEX charges become available from the
ZINC database because this charge set is demonstrated to give

Figure 4. (a) DOCK enrichment plots with an energy score ofSE(f)
for 0 < f < 10% of the 9216 random and 28 known binding molecules
for three different sampling rates (nc, no). The MMFF94 charge model
was used. (b) DOCK enrichment plots with∆Gbinding

ZSK scoring function
(see eq 2) ofSE(f) for 0 < f < 10% of the 9216 random and 28 known
binding molecules for three different sampling rates (nc, no). The
MMFF94 charge model was used. (c) AutoDock enrichment plots of
SE(f) for 0 < f < 10% of the 9216 random and 28 known binding
molecules for three different sampling rates (ne). The MMFF94 charge
model was used.

Table 1. SE (f ) 1%) Values for the Docking Methodologies, as Also
Shown Graphically in Figure 4a and ca

DOCK energy score AutoDock

SE(f ) 1%) SE(f ) 1%)

total success failure total success failure

1000 25 0.39 0.80 0.17 1000 0.50 0.80 0.43
10000 100 0.54 0.64 0.43 10000 0.79 0.92 0.69

100000 100 0.57 0.55 0.59 100000 0.86 0.92 0.80

aTotal refers to all of the known binding compounds, success to those
that were docked to<2 Å RMSD accuracy with the relevant docking
methodology, and failure to those that were not docked to<2 Å RMSD
accuracy.

Table 2. AUC Values for the Docking Methodologies, as Also Shown
Graphically in Figure 4a and ca

DOCK energy score AutoDock

AUC AUC

total success failure total success failure

1000 25 0.93 0.99 0.90 1000 0.96 0.99 0.95
10000 100 0.97 0.98 0.96 10000 0.98 0.99 0.98
100000 100 0.91 0.96 0.88 100000 0.97 1.00 0.96

a Total refers to all of the known binding compounds, success to those
that were docked to<2 Å RMSD accuracy with the relevant docking
methodology, and failure to those that were not docked to<2 Å RMSD
accuracy.
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the best pose prediction, and accurate pose prediction is also
shown to be correlated to enrichment. Nonetheless, the current
performance is very encouraging and should enable screens of
larger numbers of compounds to detect unknown DNA-binding
molecules. The GBSA scoring function in the DOCK program
was employed as the post-docking filter and not shown to give
a large improvement in enrichment over the standard DOCK
energy score, except at very lowf.

As noted earlier, the application of in silico virtual screening
techniques to DNA-ligand binding is relatively uncommon, and
we are not aware of a similar study since the early work of
Grootenhuis et al.15,16It is interesting to consider whether these
methods are more or less effective for DNA than for the protein
systems for which they are principally used. A recent study on
the pose prediction of 189 different protein-ligand complexes
with different scoring functions showed that success rates of
70-90% were typical for DOCK and AutoDock scores with
the exception of a few protein families.30 Another recent study
on 5 protein targets and a total of 49 known ligands, which
focused on enrichment, showed that average DOCKSE(f ) 2%)
values were around 20%.31 The GOLD scoring function32

performed significantly better in the same study withSE(f )
2%) values averaging 40% but reaching 80% for some targets;
AutoDock was not used in this work. Therefore, it would appear
(although it is impossible to summarize all of the available
protein-ligand docking information) that the pose prediction
performance in the present study is slightly disappointing, but
the observed enrichment exceeds what one would expect from
similar protein-ligand studies. It is interesting that the Au-
toDock scoring function, which was parametrized with experi-
mental protein-ligand inhibition constants, performs better than
the DOCK scoring function, which is more closely matched to
the original AMBER94 force field. It would thus appear that
the parametrization is transferable from proteins to DNA.

Methods

Ligand and Receptor Preparation. Twenty-eight crystal
structures of the d(CGCGAATTCGCG)2 sequence complexed
with small molecule ligands were downloaded from the PDB,28

via a search of the Nucleic Acid Data Bank (NDB33). The
ligands with their corresponding PDB IDs are shown in Figure
1. The ligands were extracted, atom types assigned, explicit
hydrogens added, and the molecules minimized to 0.1 kcal
mol-1/Å root-mean-squared gradient using the Sybyl 7.0 pack-
age34 and the MMFF94 force field. Atomic point charges were
assigned according to four different models, MMFF94,35-39

AM1-BCC,40,41 and two AM1-CM2 methods,42 designed to
produce charges approriate for an aqueous and nonpolar organic
solvent respectively (AMSOL-WAT and AMSOL-HEX).
MMFF94 was chosen because the mol2 format files available
from the ZINC database29 (see below) have MMFF94 point
charges assigned. AM1-BCC is a semiempirical charge model
derived to reproduce the restrained electrostatic potential (RESP)
approach to charge fitting used in parametrizing the AMBER94
force field,23 the force field that is the basis of the scoring
functions used in both DOCK and AutoDock. The AMSOL-
WAT models are used in the db format files in ZINC, and the
charges were assigned here using the approach43 of Wei et al.,
as is also the case for ZINC.29

The receptor for all of the docking studies was chosen from
the 28 ligand-receptor structures to be the DNA duplex closest
to the average of these 28 structures, as determined by a script
written for theptraj program in the AMBER8 package.44 This
most representative structure was the 1VZK DNA duplex.

DOCK Methodology. The DOCK program (v. 5.1.1) was
used.45 It was slightly modified to introduce a Mersenne twister
random number generator (RNG)46 because the built-in random
number generators did not give reproducible results on our
systems; the default RNG is adequately random, but identical
seeds did not give identical runs, which was felt to be important
for a systematic study. DOCK defines the binding site by a
cluster of spheres, which was chosen in this case to cover the
entire minor groove. AMBER94 charges and van der Waals
parameters were assigned to the atoms of the DNA to construct
the interaction grids. The DOCK energy score was used as the
primary and secondary scoring function in the docking runs.
The generalized Born surface area (GBSA) scoring function47

was found to be too slow to use as a primary or secondary
function in docking calculations, but was tested as a post-
docking filter (see below). All default parameters were used
for the docking runs and grid construction, except for two
parameters, which were systematically varied to determine their
effect: no, the number of orientations of each anchor attempted;
andnc, the number of conformations per cycle of ligand growth.
These parameters both relate to the anchor-first flexible ligand
algorithm,48 which involves splitting each ligand into fragments.
One fragment is selected as the anchor. This anchor is docked
no times into the receptor, and the top-scoringnc orientations
taken forward. The remaining ligand fragments are then added
one by one with a torsional search to find the best orientation
with respect to the anchor, and after each fragment is added,
the top-scoringnc conformations are taken forward to the next
stage until the whole ligand has been constructed. Increasing
no andnc will increase the sampling carried out in each docking
run, which should improve the accuracy of the method if the
scoring function is adequate, but naturally, it also increases the
run time. It was also found in preliminary testing to be more
effective in terms of pose prediction to use united atom
descriptions of both the DNA and the ligands.

The accuracy of each docking run was assessed by the root-
mean-squared deviation (RMSD) of the heavy atom coordinates
of the docked ligand from the heavy atom coordinates of the
crystal structure ligand, after the heavy atoms of the two DNA
duplexes had been placed in maximal alignment. This procedure
was automated via a script written for the VMD program.49 The
symmetry of the DNA sequence was taken into account in
determining the RMSD. Only the best-scoring pose from each
docking run was considered, which in our opinion is the best
measure of the utility of the docking tool in the absence of other
information about the binding pose.

AutoDock Methodology. The AutoDock program (v 3.05)
was used.50,51AutoDock defines the binding site solely in terms
of a grid of interaction points. We chose to center this grid at
the center of the minor groove. The minor groove center was
defined as the point on the line perpendicular to line connecting
the N3 atoms of the central purine residues and the line
connecting the O2 atoms of the central pyrimidine residues,
which is 3.0 Å away from both O2 atoms on the central
pyrimidine residues. This position was calculated using a script
written for the MMTK package.52 The grid was extended 30 Å
along the DNA axis and 22.5 Å in the two perpendicular
directions to encompass the entire minor groove.

Point charges were assigned to the DNA according to the
AMBER94 force field, as with DOCK. The default van der
Waals interaction parameters (based on a smoothed united atom
AMBER force field) were used. The default behavior of using
united atom representations of both ligand and receptor was
adopted, as had been shown to be most successful in DOCK.
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The AutoDock free energy scoring function,50 which is based
on these force field terms plus additional solvation and entropic
terms, was used for all calculations. It was necessary to add
solvation terms for phosphorus atoms; these were adopted from
a recent study that used AutoDock to examine RNA-ligand
interactions.53 Ten runs of the default Lamarkian genetic
algorithm for searching ligand conformations were used per
ligand; the only parameter adjusted from the default wasne,
the number of energy evaluations allowed for each run of the
genetic algorithm. Thene value was adjusted systematically to
investigate the effect of increased sampling on the effectiveness
of the procedure. The best scoring solution from all 10 runs
was used as the predicted binding conformation.

The accuracy of each docking run was assessed according to
the RMSD of the ligand heavy atom coordinates from the crystal
structure, using the same procedure as used for the DOCK runs,
described above.

ZINC Database and Enrichment Calculations.We wished
to investigate the effectiveness of the two programs in discrimi-
nating known minor groove binders from random compounds.
The same twenty-eight compounds as used for the pose
prediction testing formed the test set of known binders. Using
the ZINC web-based database of commercially available
compounds29 as the source, we searched for compounds with a
net chargeg+1 and molecular weight (MW) within one
standard deviation of the mean of the test set (i.e., 336< MW
< 510). These criteria returned 29 6573 compounds from the
ZINC database (on 13/08/2005), from which we chose 9216
purely randomly (each compound with an equal probability of
selection) to form our random set. We chose these search criteria
because all but one of the test set of known binders are positively
charged and because computed binding affinities have been
shown to increase disproportionately with molecular weight.54

All compounds in the test set and the random set were docked
using the DOCK and AutoDock programs as described above.
The compounds were ranked according to the scoring functions
of the two programs. The GBSA scoring function of DOCK
was also tested for rescoring docked poses. United atom models
of the DNA were used in constructing the GB and SA scoring
grids and default parameters applied.47 The GBSA function was
used in a recent study of DNA-minor groove binders by Kang
et al.,55 where all-atom models of the DNA were used.
Unfortunately, it appears to be impossible to rescore poses
generated using a united atom representation with an all-atom
grid without atom overlap occurring, and therefore, we could
not test the previous authors’ exact methodology with our
docked poses. We tested two parametrizations of the total score
as a function of different interaction components:

∆Gbinding
ZSK is the parametrization according to Zou et al.,47

where∆Gpol is the polar (GB) contribution to binding,∆Gvdw

the van der Waals interaction,SAHP the hydrophobic surface
area, andSA the total surface area.∆Gbinding

KSK is the param-
etrization according to Kang et al.52

The results studies were assessed according to the enrichment
or sensitivitySE(f):42

This calculation refers to a scenario where the top fractionf of
the compounds as ranked by docking are selected and one
wishes to know what fraction of the total number of known
binders have been found. Similarly, the specificitySP(f) is
defined as

and the area under the curve (AUC) of a plot ofSE(f) versus (1
- SP(f)) is another useful measure of the overall performance
of a virtual screening procedure.56
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